Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 262: 115168, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37352585

ABSTRACT

Using low Cd accumulation cultivars and managing field water regimes are effective measures to mitigate Cd accumulations in rice grains. However, the effect of the cultivar-water condition interaction (CWI) on grain Cd accumulations has largely been ignored. To solve this problem, pot and hydroponic experiments were conducted using 14 rice cultivars and two contrasting water conditions. The results showed that CWI significantly affected Cd concentrations in rice grains and roots, explaining 8.8% and 22.8% of the total variance, respectively. These CWI effects were derived from cultivar-dependent variations in rhizosphere soil properties [Eh, pH and available Cd associated with root radial oxygen loss (ROL)] and root Cd uptake. In this context, cultivar HH61 exhibited low, stable Cd accumulations, owing to its stably lower translocation rate, root Cd uptake ability and available Cd in its rhizosphere than the other cultivars, which was induced by its lower ROL. Root-to-grain Cd translocation rates were vital in determining Cd accumulations in grain of different cultivars but were independent from CWI. These results indicated that CWI could play an important role in Cd accumulation in rice while stable low-Cd cultivar should possess low ROL under flooding and low root-to-grain Cd translocation rate. The results will provide novel theoretical basis for cultivar selection and hence benefit the extensive use of low-accumulation cultivars and public health.

2.
Ecotoxicol Environ Saf ; 190: 110136, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31901806

ABSTRACT

Large areas of the paddy fields in South China are contaminated with arsenic (As), which causes serious problems, including high As concentrations in brown rice. Three As-resistant iron-oxidizing bacteria (FeOB) namely, Bacillus sp. T2, Pseudomonas sp. Yangling I4 and Bacillus sp. TF1-3, were isolated and applied to rice grown in different As-contaminated environments to study the effects of FeOB on the As accumulation in rice and clarify the possible mechanisms involved. The results showed that FeOB inoculation significantly decreased the inorganic As concentrations in brown rice grown in pots and paddy fields by 3.7-13.3% and 4.6-12.1%, respectively. FeOB inoculation enhanced the formation of Fe plaque, which sequestered more As on the root surface. Moreover, a significantly lower level of As(III) influx was observed in the rice cultivated with FeOB than in the control. FeOB inoculation also decreased the As concentrations in pore water and the Fe(II)/Fe(III) ratio in rhizosphere soil. The present results suggest that FeOB inoculation decreased the inorganic As concentrations in brown rice by affecting the formation of Fe plaque, As(III) uptake kinetics and rhizosphere soil properties. Based on our results, FeOB inoculation could be considered a useful method to decrease inorganic As concentrations in brown rice grown in As-contaminated paddy fields.


Subject(s)
Arsenic/metabolism , Oryza/physiology , Soil Pollutants/metabolism , Arsenic/analysis , Arsenicals , Bacteria , China , Ferric Compounds , Iron , Oxidation-Reduction , Plant Roots/chemistry , Rhizosphere , Soil , Soil Pollutants/analysis
3.
Environ Sci Pollut Res Int ; 24(10): 9111-9121, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28150148

ABSTRACT

Large areas of paddy fields in mining areas in south China have been contaminated by mixed Cd and As. To test the possibility of using organic manure (OM) as a method of reducing Cd and As accumulation in brown rice and increase the grain yield in such paddy fields, two rice cultivars [Jianyou G2 (JY) and Fengyousimiao (FY)] and three amounts of OM (0, 0.5, 1.5 kg/m2) were examined in three Cd-As-contaminated paddy fields (Fogang, Dabaoshan, Fankou) in Guangdong Province. The results show that the application of OM can effectively increase the grain yield and reduce Cd. However, the As concentration was found to increase in brown rice, especially when high levels of OM were used. The addition of OM increased the soil pH and organic matter content in the soils and enhanced the activities of superoxide dismutase (SOD) and catalase (CAT) in plant tissues. Our results suggest that OM can be used as an amendment to effectively decrease Cd accumulation in brown rice in Cd-contaminated paddy fields. However, it is necessary to consider the negative effects of OM amendments when adding OM to As-contaminated paddy fields.


Subject(s)
Manure , Oryza/chemistry , Cadmium , China , Soil/chemistry , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...